Fast Simulation Studies with the EPIC Detector

Shyam Kumar, Annalisa Mastroserio, Domenico Elia University and INFN Bari, Italy

Outline

- EPIC Geometry
 - EPIC Barrel Configuration (used in fast simulation)
- Tracking Performances
 - Spatial Resolution and Multiple Scattering
 - Performances with Dead Layers
- Summary and Future Plan

EPIC Configuration used in Fast Simulation

Barrel Track Model (Cylindrical layers) Based on Kalman filter

Detector EPIC: "Detector"									
Name			r [cm]		X0	phi	& z res	[um] laye	rEff
0.	vertex		0.00		0.0000	-	-	-	
1.	bpipe		3.18		0.0036	-	-	-	
2.	VTX1		3.60		0.0005	3	3	0.95	
3.	VTX2		4.80		0.0005	3	3	0.95	
4.	VTX3		12.00		0.0005	3	3	0.95	
5.	BARRSUPPORT		13.50		0.0004	-	-	-	
6.	BARR1		27.00		0.0025	3	3	0.95	
7.	BARR2		42.00		0.0055	3	3	0.95	
8.	MM1	55.00		0.0050	150	150	0.95		
9.	T0F	64.60		0.0100	30	3000	0.95		

https://wiki.bnl.gov/EPIC/index.php?title=Tracking#Tasks_list

EIC Recons Comparison with Fast Simulation

Blue Marker (DD4HEP), Magenta Fast Simulation, Blue dotted line PWG requirement

epic_brycecanyon.xml with calorimeters and far forward detectors removed

shyam@shyam:~/eic/epic\$ git tag -l
22.10.0
22.10_rc1
22.11.0
shyam@shyam:~/eic/epic\$ git checkout 22.10.0
shyam@shyam:~/eic/epic\$ git pull origin main

A good agreement of data points with the fast simulation

Spatial Resolution and Multiple Scattering

$$\frac{\sigma_{pT}}{p_T} = \sqrt{\left(\frac{\sigma_{pT_{SR}}}{p_T}\right)^2 + \left(\frac{\sigma_{pT_{MS}}}{p_T}\right)^2}$$

$$\sigma_{pT_{SR}} \propto \sigma_{r\phi} p$$
 $\sigma_{pT_{MS}} \propto \frac{1}{\beta p} p = \text{const/}\beta$

$$\mathcal{O}_{d_0} = \sqrt{\mathcal{O}_{d_0}^2 + \mathcal{O}_{d_0}^2}$$

$$\Delta d_0|_{res.} \approx \frac{3\sigma_{r\phi}}{\sqrt{N+5}} \sqrt{1 + \frac{8r_0}{L_0} + \frac{28r_0^2}{L_0^2} + \frac{40r_0^3}{L_0^3} + \frac{20r_0^4}{L_0^4}}$$

$$\Delta d_0|_{m.s.} \approx \frac{0.0136 \,\text{GeV/c}}{\beta p_T} r_0 \sqrt{\frac{d}{X_0 \sin \theta}} \sqrt{1 + \frac{1}{2} \left(\frac{r_0}{L_0}\right) + \frac{N}{4} \left(\frac{r_0}{L_0}\right)^2}$$

Performances with Dead Layers

Performances with Dead Layers

 r_0/L_0 is very important for DCA_{xy}

Standard
$$r_0/L_0 = 3.6/(64.6-3.6) = 0.059$$

VTX1 Dead = $4.8/(64.6-4.8) = 0.080$

Performances with Dead Layers

VTX3 detector resolution is an important constraint for track extrapolations

Performances with Dead Layers (Spatial Resolution Term)

Fast Simulation (Spatial Resolution)

Low Momentum Range

01/12/22

Fast Simulation (Ratios Spatial Resolution)

Low Momentum Range

Fast Simulation developed by S.Kumar, Annalisa, F. Colamaria

Performances with Dead Layers (Multiple Scattering Term)

$$\frac{\Delta p_T}{p_T}|_{m.s.} = \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136 \, \text{GeV/c}}{0.3\beta \, B_0 L_0} \sqrt{\frac{d_{tot}}{X_0 \, \sin \theta}} \left(1 + 0.038 \ln \frac{d}{X_0 \, \sin \theta}\right) \\ \sigma_{d \, 0_{\text{MS}}} \approx 0.0136 \left(GeV/c\right) * \sqrt{\frac{d}{X_0 \, \sin \theta}} \left(\frac{r_0}{\beta \, p_T}\right) \sqrt{1 + 0.5 * \left(\frac{r_0}{L_0}\right) + 0.25 * N * \left(\frac{r_0}{L_0}\right)^2}$$

Making 1st layer dead Lo changes

r_0 and r_0/L_0 is very important for DCAxy (MS)

Making 1st layer dead r₀ and L₀ changes

$$r_0/L_0$$
 (Std) = 3.6/(64.6-3.6) = 0.059
 r_0/L_0 (VTX1 Dead) = 4.8/(64.6-4.8) = 0.080

Performances with Dead Layers (Ratios of Multiple Scattering Term)

$$\frac{\Delta p_T}{p_T}|_{m.s.} = \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136 \, \text{GeV/c}}{0.3\beta \, B_0 L_0} \sqrt{\frac{d_{tot}}{X_0 \, \sin \theta}} \left(1 + 0.038 \ln \frac{d}{X_0 \, \sin \theta}\right) \quad \sigma_{d \, 0_{\text{MS}}} \approx 0.0136 \left(GeV/c\right) * \sqrt{\frac{d}{X_0 \, \sin \theta}} \left(\frac{r_0}{\beta \, p_T}\right) \sqrt{1 + 0.5 * \left(\frac{r_0}{L_0}\right) + 0.25 * N * \left(\frac{r_0}{L_0}\right)^2}$$

Making 1st layer dead Lo changes

Making 1st layer dead roand Lochanges

$$r_0/L_0$$
 (Std) = 3.6/(64.6-3.6) = 0.059
 r_0/L_0 (VTX1 Dead) = 4.8/(64.6-4.8) = 0.080

Summary and Future Plan

- Checked the contribuition of spatial resolution and multiple scattering using FastSimulation
- Checked the dead layer effect on the tracking performances
- Future Plan:
 - Check the performances again once ETOF issue is fixed
 - Also the other studies as number of hits, chi2, etc with realistic seeding

Momentum Resolution

Zbynek Drasal, Werner Riegler

arXiv:1805.12014

Tracking Performances: Momentum and DCA resolutions

Momentum Resolution: affects width of invariant mass peak

p_⊤ resolution:

$$\begin{split} \frac{\Delta p_T}{p_T}|_{res.} &= \frac{\sigma_{r\phi} \, p_T}{0.3 \, B_0 L_0^2} \sqrt{\frac{720 N^3}{(N-1)(N+1)(N+2)(N+3)}} \quad \text{Linear term} \\ &\approx \frac{12 \, \sigma_{r\phi} \, p_T}{0.3 \, B_0 L_0^2} \sqrt{\frac{5}{N+5}} \\ \frac{\Delta p_T}{p_T}|_{m.s.} &= \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136 \, \text{GeV/c}}{0.3 \beta \, B_0 L_0} \sqrt{\frac{d_{tot}}{X_0 \, \sin \theta}} \left(1 + 0.038 \ln \frac{d}{X_0 \, \sin \theta}\right) \end{split}$$

Constant term (at β <1 increase)

Based on Gluckstern Approach (equal distance between planes and equal spatial resolutions)

SR (Spatial Resolution): Uncertainty associated with finite size of pixels

MS (Multiple Scattering): Uncertainty associated with thickness of Material

$$\frac{\sigma_{pT}}{p_T} = \sqrt{\left(\frac{\sigma_{pT_{SR}}}{p_T}\right)^2 + \left(\frac{\sigma_{pT_{MS}}}{p_T}\right)^2}$$

DCA_{xv} Resolution

arXiv:1805.12014

r_o distance of near hit

L_o: distance between near and farthest hit from the beamline

 DCA_{xy} increases at larger η because r_0/L_0 increases

DCA_{xv} resolution:

$$\Delta d_0|_{res.} \approx \left[\frac{3\sigma_{r\phi}}{\sqrt{N+5}} \sqrt{1 + \left[\frac{8r_0}{L_0} \right] + \frac{28r_0^2}{L_0^2} + \frac{40r_0^3}{L_0^3} + \frac{20r_0^4}{L_0^4} \right]} \right]$$

$$\Delta d_0|_{m.s.} \approx \frac{0.0136 \,\mathrm{GeV/c}}{\beta p_T} r_0 \sqrt{\frac{d}{X_0 \sin \theta}} \sqrt{1 + \frac{1}{2} \left(\frac{r_0}{L_0}\right) + \frac{N}{4} \left(\frac{r_0}{L_0}\right)^2}$$

 (r_0/L_0) is very important for DCA_{xv} resolutions

Barrel

r0 = 3.6; L0 = 64.0-3.6; N = 7;
$$\sigma_{r,\phi} = 10 \,\mu \, m / \sqrt{12}$$

Expected DCAxy Resol Barrel (SR): 3.14743 μm

Disk

$$\sigma_{d_0} = \sqrt{\sigma_{d0_{SR}}^2 + \sigma_{d0_{MS}}^2}$$

Forward/Backward

Double_t rmin[5] = {3.67617,3.67617,4.07617,5.37617,7.07617}; Double_t rmax[5] = {24.00010,42.500107,43.12010,43.12010,43.12010}; Double_t z[] ={25., 45., 70., 100., 135.}; Double_t L_0 = 43.12010-3.67617; N = 4; // number of points $\sigma_{r\phi} = 10\,\mu\,m/\sqrt{12}$

Expected DCAxy Resol Forward (SR): 4.10559 µm

if (L_0 = 20cm then Expected DCAxy = 5.543 μ m)

Simple Example

Consider an example of silicon layers of 50 µm thickness

$$r_0 = 2 \text{ cm} \ L_0 = 7-2 = 5 \text{ cm};$$

$$\sigma_{r\phi} = 10 \,\mu$$
 m/ $\sqrt{12}$

